University of Pennsylvania Pharmacogenomic Program Epic Genomic Indicator language

Conversity of Pennsylvania Pharmacogenomic Prog	
Genomic Indicator Name	Description
CYP2B6 Intermediate Metabolizer	The CYP2B6 enzyme contributes to the metabolism of clinically relevant drugs including efavirenz
	and sertraline.
	The CYP2B6 enzyme contributes to the metabolism of clinically relevant drugs including efavirenz
CYP2B6 Normal Metabolizer CYP2B6 Poor Metabolizer	and sertraline.
	The CYP2B6 enzyme contributes to the metabolism of clinically relevant drugs including efavirenz
	and sertraline.
	The CYP2B6 enzyme contributes to the metabolism of clinically relevant drugs including efavirenz
CYP2B6 Rapid Metabolizer	and sertraline.
	The CYP2B6 enzyme contributes to the metabolism of clinically relevant drugs including efavirenz
CYP2B6 Ultrarapid Metabolizer	and sertraline.
	The CYP2C19 enzyme contributes to the metabolism of a large number of clinically relevant drugs
	and drug classes such as antidepressants, voriconazole, proton pump inhibitors (PPIs) and
CYP2C19 Intermediate Metabolizer CYP2C19 Normal Metabolizer	clopidogrel.
	The CYP2C19 enzyme contributes to the metabolism of a large number of clinically relevant drugs
	and drug classes such as antidepressants, voriconazole, proton pump inhibitors (PPIs) and
	clopidogrel.
	The CYP2C19 enzyme contributes to the metabolism of a large number of clinically relevant drugs
	and drug classes such as antidepressants, voriconazole, proton pump inhibitors (PPIs) and
CYP2C19 Poor Metabolizer	clopidogrel.
	The CYP2C19 enzyme contributes to the metabolism of a large number of clinically relevant drugs
	and drug classes such as antidepressants, voriconazole, proton pump inhibitors (PPIs) and
CYP2C19 Rapid Metabolizer	clopidogrel.
	The CYP2C19 enzyme contributes to the metabolism of a large number of clinically relevant drugs
	and drug classes such as antidepressants, voriconazole, proton pump inhibitors (PPIs) and
CYP2C19 Ultrarapid Metabolizer	clopidogrel.
	The CYP2C9 enzyme contributes to the metabolism of clinically relevant drugs and drug classes
CYP2C9 Intermediate Metabolizer	such as nonsteroidal anti-inflammatory drugs, phenytoin, warfarin and siponimod
	The CYP2C9 enzyme contributes to the metabolism of clinically relevant drugs and drug classes
CYP2C9 Normal Metabolizer	such as nonsteroidal anti-inflammatory drugs, phenytoin, warfarin and siponimod
	The CYP2C9 enzyme contributes to the metabolism of clinically relevant drugs and drug classes
CYP2C9 Poor Metabolizer	such as nonsteroidal anti-inflammatory drugs, phenytoin, warfarin and siponimod
	The CYP2D6 enzyme contributes to the metabolism of a large number of clinically relevant drugs
CYP2D6 Intermediate Metabolizer	and drug classes such as antidepressants, antiemetics and opioid analgesics.
CYP2D6 Needs Review	Please review CYP2D6 test results and manually apply the appropriate Genomic Indicator
	reade review on 250 test results and manadiny apply the appropriate denomine maledtor
	The CYP2D6 enzyme contributes to the metabolism of a large number of clinically relevant drugs
CYP2D6 Normal Metabolizer	and drug classes such as antidepressants, antiemetics and opioid analgesics.
	The CYP2D6 enzyme contributes to the metabolism of a large number of clinically relevant drugs
CYP2D6 Poor Metabolizer	and drug classes such as antidepressants, antiemetics and opioid analgesics.
	The CYP2D6 enzyme contributes to the metabolism of a large number of clinically relevant drugs
CYP2D6 Ultrarapid Metabolizer	and drug classes such as antidepressants, antiemetics and opioid analgesics.
	and analy classes such as annucly essants, and enclass and opioid analycestes.
CYP3A5 Intermediate Metabolizer	The CYP3A5 enzyme contributes to the metabolism of the immunosuppressant drug tacrolimus
CYP3A5 Normal Metabolizer	The CYP3A5 enzyme contributes to the metabolism of the immunosuppressant drug tacrolimus
CYP3A5 Poor Metabolizer	The CYP3A5 enzyme contributes to the metabolism of the immunosuppressant drug tacrolimus
DPYD Intermediate Metabolizer	The DPYD gene contributes to the metabolism of fluorouracil and capecitabine.
DPYD Normal Metabolizer	The DPYD gene contributes to the metabolism of fluorouracil and capecitabine.
DPYD Poor Metabolizer	The DPYD gene contributes to the metabolism of fluorouracil and capecitabilite.
HLA-A*31:01 Negative	HLA-A*31:01 is associated with a severe cutaneous adverse reaction to carbamazepine
HLA-A*31:01 Positive	HLA-A*31:01 is associated with a severe cutaneous adverse reaction to carbamazepine
	HLA-B*15:02 is associated with a severe cutaneous adverse reaction to carbamazepine,
HLA-B*15:02 Negative	oxcarbazepine, phenytoin, and fosphenytoin
	HLA-B*15:02 is associated with a severe cutaneous adverse reaction to carbamazepine,
HLA-B*15:02 Positive	oxcarbazepine, phenytoin, and fosphenytoin
HLA-B*57:01 Negative	HLA-B*57:01 is associated with a hypersensitivity reaction to abacavir
HLA-B*57:01 Positive	HLA-B*57:01 is associated with a hypersensitivity reaction to abacavir
	איזיארא איז איזיארא איזיארא איזיארא איזיארא איזיאראיזיאראיזיאראיזיאראיזיאראיזיאראיזיאראיזיאראיזיאראיזיאראיזיא

HLA-B*58:01 Negative	HLA-B*58:01 is associated with a severe cutaneous adverse reaction to allopurinol
HLA-B*58:01 Positive	HLA-B*58:01 is associated with a severe cutaneous adverse reaction to allopurinol
	The IFNL4 gene variation is the strongest baseline predictor of treatment response to
	peginterferon alpha containing regimens for hepatitis C treatment. (Some references refer to this
IFNL4 Favorable response genotype	gene as IFNL3)
	The IFNL4 gene variation is the strongest baseline predictor of treatment response to
	peginterferon alpha containing regimens for hepatitis C treatment. (Some references refer to this
IFNL4 Unfavorable response genotype	gene as IFNL3)
	The NUDT15 gene encodes an enzyme that contributes to the metabolism of thiopurines
NUDT15 Intermediate Metabolizer	(azathioprine, mercaptopurine, and thioguanine)
	The NUDT15 gene encodes an enzyme that contributes to the metabolism of thiopurines
NUDT15 Normal Metabolizer	(azathioprine, mercaptopurine, and thioguanine)
	The NUDT15 gene encodes an enzyme that contributes to the metabolism of thiopurines
NUDT15 Poor Metabolizer	(azathioprine, mercaptopurine, and thioguanine)
	The NUDT15 gene encodes an enzyme that contributes to the metabolism of thiopurines
NUDT15 Possible Intermediate Metabolizer	(azathioprine, mercaptopurine, and thioguanine)
	The SLCO1B1 gene encodes a transporter protein that is involved with the cellular influx of HMG-
SLCO1B1 Decreased Function	CoA reductase inhibitors (statins).
	The SLCO1B1 gene encodes a transporter protein that is involved with the cellular influx of HMG-
SLCO1B1 Increased Function	CoA reductase inhibitors (statins).
	The SLCO1B1 gene encodes a transporter protein that is involved with the cellular influx of HMG-
SLCO1B1 Normal Function	CoA reductase inhibitors (statins).
	The SLCO1B1 gene encodes a transporter protein that is involved with the cellular influx of HMG-
SLCO1B1 Poor Function	CoA reductase inhibitors (statins).
	The SLCO1B1 gene encodes a transporter protein that is involved with the cellular influx of HMG-
SLCO1B1 Possible Decreased Function	CoA reductase inhibitors (statins).
	The TPMT gene encodes an enzyme that contributes to the metabolism of thiopurines
TPMT Intermediate Metabolizer	(azathioprine, mercaptopurine, and thioguanine).
	The TPMT gene encodes an enzyme that contributes to the metabolism of thiopurines
TPMT Normal Metabolizer	(azathioprine, mercaptopurine, and thioguanine).
	The TPMT gene encodes an enzyme that contributes to the metabolism of thiopurines
TPMT Poor Metabolizer	(azathioprine, mercaptopurine, and thioguanine).
	The TPMT gene encodes an enzyme that contributes to the metabolism of thiopurines
TPMT Possible Intermediate Metabolizer	(azathioprine, mercaptopurine, and thioguanine).
	The TPMT gene encodes an enzyme that contributes to the metabolism of thiopurines
TPMT Rapid Metabolizer	(azathioprine, mercaptopurine, and thioguanine).
UGT1A1 Intermediate Metabolizer	The UGT1A1 enzyme contributes to the metabolism of irinotecan and atazanavir.
UGT1A1 Normal Metabolizer	The UGT1A1 enzyme contributes to the metabolism of irinotecan and atazanavir.
UGT1A1 Poor Metabolizer	The UGT1A1 enzyme contributes to the metabolism of irinotecan and atazanavir.
© 2023 Epic Systems Corporation	Last undated: 4/27/202

© 2023 Epic Systems Corporation.

Last updated: 4/27/2023